• İlhan Candan Dicle University



Ag-Au alloy, Plasmonic, plasmonic properties, SPR


The investigation of plasmonic Ag-Au alloy nanoparticles stands at the forefront of nanomaterial research, combining the unique optical properties of silver (Ag) and gold (Au) in a singular nanoscale entity. This abstract encapsulates the key aspects of ongoing research and the potential implications of understanding the properties of Ag-Au alloy nanoparticles. Researchers delve into the synthesis methods, exploring chemical reduction, seed-mediated growth, and advanced techniques like sonochemistry and microwave-assisted methods. Tailoring the size, composition, and morphology of Ag-Au alloy nanoparticles through precise control of reaction conditions is a focal point, allowing for the customization of their optical and catalytic characteristics. The investigation encompasses an array of characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-visible spectroscopy. These methods offer insights into the structural and optical features, enabling a comprehensive understanding of the alloy nanoparticles. Plasmonic resonance phenomena, resulting from the combination of Ag and Au components, are of particular interest due to their impact on the nanoparticles' optical responses. The applications of Ag-Au alloy nanoparticles span diverse domains, from catalysis and sensing to biomedical imaging and environmental remediation. The unique combination of properties, including tunable surface plasmon resonances and enhanced catalytic activity, positions these nanoparticles as versatile tools for addressing complex challenges in science and technology. As the investigation unfolds, the potential for Ag-Au alloy nanoparticles to catalyse innovations across various disciplines becomes increasingly evident, underscoring their significance in the nanomaterial landscape.


Bansal, A., Sekhon, J. S., & Verma, S. (2014). Scattering efficiency and LSPR tunability of bimetallic Ag, Au, and Cu nanoparticles. Plasmonics, 9, 143-150.

Bhatia, P., Verma, S., & Sinha, M. (2020). Tunable optical properties of Ni–Ag and Ni–Au nanoparticles in magneto-plasmonic nanostructures. Optical and Quantum Electronics, 52, 1-12.

Blosi, M., Albonetti, S., Gatti, F., Dondi, M., Migliori, A., Ortolani, L., . . . Au, A. (2010). Au, Ag and Au-Ag nanoparticles: microwave-assisted synthesis in water and applications in ceramic and catalysis. Nanotech, 1, 352-355.

Borah, R., & Verbruggen, S. W. (2020). Silver–gold bimetallic alloy versus core–shell nanoparticles: Implications for plasmonic enhancement and photothermal applications. The Journal of Physical Chemistry C, 124(22), 12081-12094.

Chinh, V. D., & Trung, N. Q. (2015). Synthesis and optical properties of colloidal Au–Ag alloy nanoparticles. International Journal of Nanotechnology, 12(5-7), 515-524.

Cortie, M. B., & McDonagh, A. M. (2011). Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chemical reviews, 111(6), 3713-3735.

Coviello, V., Forrer, D., & Amendola, V. (2022). Recent developments in plasmonic alloy nanoparticles: synthesis, modelling, properties and applications. ChemPhysChem, 23(21), e202200136.

Csapó, E., Oszkó, A., Varga, E., Juhász, Á., Buzás, N., Kőrösi, L., . . . Dékány, I. (2012). Synthesis and characterization of Ag/Au alloy and core (Ag)–shell (Au) nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 415, 281-287.

Gao, C., Hu, Y., Wang, M., Chi, M., & Yin, Y. (2014). Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. Journal of the American Chemical Society, 136(20), 7474-7479.

Han, Q., Zhang, C., Gao, W., Han, Z., Liu, T., Li, C., . . . Zheng, H. (2016). Ag-Au alloy nanoparticles: Synthesis and in situ monitoring SERS of plasmonic catalysis. Sensors and Actuators B: Chemical, 231, 609-614.

Homola, J. (2003). Present and future of surface plasmon resonance biosensors. Analytical and bioanalytical chemistry, 377(3), 528-539.

Homola, J., Yee, S. S., & Gauglitz, G. (1999). Surface plasmon resonance sensors. Sensors and actuators B: Chemical, 54(1-2), 3-15.

Khurana, K., & Jaggi, N. (2021). Localized surface plasmonic properties of Au and Ag nanoparticles for sensors: A review. Plasmonics, 16(4), 981-999.

Kim, S., Kim, J. M., Park, J. E., & Nam, J. M. (2018). Nonnoble‐metal‐based plasmonic nanomaterials: recent advances and future perspectives. Advanced Materials, 30(42), 1704528.

Kunwar, S., Pandey, P., Pandit, S., Sui, M., & Lee, J. (2020). Tunable localized surface plasmon resonance by self-assembly of trimetallic and bimetallic alloy nanoparticles via Ag sublimation from Ag/Au/Pt tri-layers. Applied Surface Science, 504, 144545.

Kunwar, S., Pandey, P., Sui, M., Bastola, S., & Lee, J. (2018). Morphological and optical properties of PdxAg1-x alloy nanoparticles. Science and Technology of advanced MaTerialS, 19(1), 160-173.

Kushwaha, A. S., Kumar, A., Kumar, R., & Srivastava, S. (2018). A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonics and Nanostructures-Fundamentals and Applications, 31, 99-106.

Li, C., Wang, C., Han, Q., Wu, Y., & Zheng, H. (2017). Investigation on optical properties of Ag–Au alloy nanoparticles. Plasmonics, 12, 1373-1379.

Major, K. J., De, C., & Obare, S. O. (2009). Recent advances in the synthesis of plasmonic bimetallic nanoparticles. Plasmonics, 4, 61-78.

Mandal, N., Das, A., & Moirangthem, R. S. (2023). In-situ label-free optical biosensing with plasmonic enhanced ellipsometry using partially-embedded bimetallic Ag-Au alloy nanoparticles. Sensors and Actuators B: Chemical, 379, 133164.

Mondal, S., Roy, N., Laskar, R. A., Sk, I., Basu, S., Mandal, D., & Begum, N. A. (2011). Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids and surfaces B: biointerfaces, 82(2), 497-504.

Nguyen, M. T., Yonezawa, T., Wang, Y., & Tokunaga, T. (2016). Double target sputtering into liquid: A new approach for preparation of Ag–Au alloy nanoparticles. Materials Letters, 171, 75-78.

Olaru, A., Bala, C., Jaffrezic-Renault, N., & Aboul-Enein, H. Y. (2015). Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Critical reviews in analytical chemistry, 45(2), 97-105.

Pasparakis, G. (2022). Recent developments in the use of gold and silver nanoparticles in biomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 14(5), e1817.

Piliarik, M., & Homola, J. (2009). Surface plasmon resonance (SPR) sensors: approaching their limits? Optics express, 17(19), 16505-16517.

Rahaghi, S. H., Poursalehi, R., & Miresmaeili, R. (2015). Optical properties of Ag-Cu alloy nanoparticles synthesized by DC arc discharge in liquid. Procedia Materials Science, 11, 738-742.

Saad, Y., Gazzah, M. H., Mougin, K., Selmi, M., & Belmabrouk, H. (2022). Sensitive detection of SARS-CoV-2 using a novel plasmonic fiber optic biosensor design. Plasmonics, 17(4), 1489-1500.

Shaikh, A. J., Batool, M., Yameen, M. A., & Waseem, A. (2018). Plasmonic effects, size and biological activity relationship of Au-Ag alloy nanoparticles. Journal of Nano Research, 54, 98-111.

Sharma, A. K., & Gupta, B. (2005). Fibre-optic sensor based on surface plasmon resonance with Ag–Au alloy nanoparticle films. Nanotechnology, 17(1), 124.

Thota, S., Wang, Y., & Zhao, J. (2018). Colloidal Au–Cu alloy nanoparticles: synthesis, optical properties and applications. Materials Chemistry Frontiers, 2(6), 1074-1089.

Yamamoto, M. (2002). Surface plasmon resonance (SPR) theory: tutorial. Review of Polarography, 48(3), 209-237.




How to Cite

Candan, İlhan. (2023). INVESTIGATION OF PLASMONIC Ag-Au ALLOY NANOPARTICLES. International Journal of Health and Applied Science, 1(1), 14–23.